首页> 外文OA文献 >Evaluation of Spin-Orbit Couplings with Linear-Response Time-Dependent Density Functional Methods
【2h】

Evaluation of Spin-Orbit Couplings with Linear-Response Time-Dependent Density Functional Methods

机译:用线性响应时间密度泛函方法评估自旋轨道耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new versatile code based on Python scripts was developed to calculate spin–orbit coupling (SOC) elements between singlet and triplet states. The code, named PySOC, is interfaced to third-party quantum chemistry packages, such as Gaussian 09 and DFTB+. SOCs are evaluated using linear-response (LR) methods based on time-dependent density functional theory (TDDFT), the Tamm-Dancoff approximation (TDA), and time-dependent density functional tight binding (TD-DFTB). The evaluation employs Casida-type wave functions and the Breit-Pauli (BP) spin–orbit Hamiltonian with an effective charge approximation. For validation purposes, SOCs calculated with PySOC are benchmarked for several organic molecules, with SOC values spanning several orders of magnitude. The computed SOCs show little variation with the basis set, but are sensitive to the chosen density functional. The benchmark results are in good agreement with reference data obtained using higher-level spin–orbit Hamiltonians and electronic structure methods, such as CASPT2 and DFT/MRCI. PySOC can be easily interfaced to other third-party codes and other methods yielding CI-type wave functions.
机译:开发了一种基于Python脚本的通用代码,用于计算单重态和三重态之间的自旋-轨道耦合(SOC)元素。名为PySOC的代码与第三方量子化学程序包(例如高斯09和DFTB +)接口。使用基于时间依赖性密度泛函理论(TDDFT),Tamm-Dancoff近似(TDA)和时间依赖性密度泛函紧密结合(TD-DFTB)的线性响应(LR)方法评估SOC。该评估采用了Casida型波函数和Breit-Pauli(BP)自旋轨道哈密顿量,并具有有效的电荷近似值。为了进行验证,将PySOC计算出的SOCs作为几种有机分子的基准,其SOC值跨越几个数量级。计算出的SOC随基集变化不大,但对所选的密度函数很敏感。基准测试结果与使用高级自旋哈密顿量和电子结构方法(例如CASPT2和DFT / MRCI)获得的参考数据高度吻合。 PySOC可以很容易地与其他第三方代码和其他产生CI型波动函数的方法相接口。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号